Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Biomaterials ; 305: 122460, 2024 Mar.
Article En | MEDLINE | ID: mdl-38246018

Ex vivo patient-derived tumor slices (PDTS) are currently limited by short-term viability in culture. Here, we show how bioengineered hydrogels enable the identification of key matrix parameters that significantly enhance PDTS viability compared to conventional culture systems. As demonstrated using single-cell RNA sequencing and high-dimensional flow cytometry, hydrogel-embedded PDTS tightly preserved cancer, cancer-associated fibroblast, and various immune cell populations and subpopulations in the corresponding original tumor. Cell-cell communication networks within the tumor microenvironment, including immune checkpoint ligand-receptor interactions, were also maintained. Remarkably, our results from a co-clinical trial suggest hydrogel-embedded PDTS may predict sensitivity to immune checkpoint inhibitors (ICIs) in head and neck cancer patients. Further, we show how these longer term-cultured tumor explants uniquely enable the sampling and detection of temporal evolution in molecular readouts when treated with ICIs. By preserving the compositional heterogeneity and complexity of patient tumors, hydrogel-embedded PDTS provide a valuable tool to facilitate experiments targeting the tumor microenvironment.


Head and Neck Neoplasms , Hydrogels , Humans , Hydrogels/pharmacology , Drug Evaluation , Tumor Microenvironment
2.
Nat Genet ; 54(7): 963-975, 2022 07.
Article En | MEDLINE | ID: mdl-35773407

The consensus molecular subtype (CMS) classification of colorectal cancer is based on bulk transcriptomics. The underlying epithelial cell diversity remains unclear. We analyzed 373,058 single-cell transcriptomes from 63 patients, focusing on 49,155 epithelial cells. We identified a pervasive genetic and transcriptomic dichotomy of malignant cells, based on distinct gene expression, DNA copy number and gene regulatory network. We recapitulated these subtypes in bulk transcriptomes from 3,614 patients. The two intrinsic subtypes, iCMS2 and iCMS3, refine CMS. iCMS3 comprises microsatellite unstable (MSI-H) cancers and one-third of microsatellite-stable (MSS) tumors. iCMS3 MSS cancers are transcriptomically more similar to MSI-H cancers than to other MSS cancers. CMS4 cancers had either iCMS2 or iCMS3 epithelium; the latter had the worst prognosis. We defined the intrinsic epithelial axis of colorectal cancer and propose a refined 'IMF' classification with five subtypes, combining intrinsic epithelial subtype (I), microsatellite instability status (M) and fibrosis (F).


Colorectal Neoplasms , Neoplasms, Glandular and Epithelial , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Epithelial Cells/pathology , Humans , Microsatellite Instability , Microsatellite Repeats/genetics , Neoplasms, Glandular and Epithelial/genetics , Transcriptome/genetics
3.
Thyroid ; 32(6): 725-738, 2022 06.
Article En | MEDLINE | ID: mdl-35317606

Background: Nonalcoholic steatohepatitis (NASH) is characterized by hepatic steatosis, lobular inflammation, and fibrosis. Thyroid hormone (TH) reduces steatosis; however, the therapeutic effect of TH on NASH-associated inflammation and fibrosis is not known. This study examined the therapeutic effect of TH on hepatic inflammation and fibrosis during NASH and investigated THs molecular actions on autophagy and mitochondrial biogenesis. Methods: HepG2-TRß cells were treated with bovine serum albumin-conjugated palmitic acid (PA) to mimic lipotoxic conditions in vitro. Mice with NASH were established by feeding C57BL/6J mice Western diet with 15% fructose in drinking water for 16 weeks. These mice were administered triiodothyronine (T3)/thyroxine (T4) supplemented in drinking water for the next eight weeks. Results: In cultured HepG2-TRß cells, TH treatment increased mitochondrial respiration and fatty acid oxidation under basal and PA-treated conditions, as well as decreased lipopolysaccharides and PA-stimulated inflammatory and fibrotic responses. In a dietary mouse model of NASH, TH administration decreased hepatic triglyceride content (3.19 ± 0.68 vs. 8.04 ± 0.42 mM/g liver) and hydroxyproline (1.44 ± 0.07 vs. 2.58 ± 0.30 mg/g liver) when compared with mice with untreated NASH. Metabolomics profiling of lipid metabolites showed that mice with NASH had increased triacylglycerol, diacylglycerol, monoacylglycerol, and hepatic cholesterol esters species, and these lipid species were decreased by TH treatment. Mice with NASH also showed decreased autophagic degradation as evidenced by decreased transcription Factor EB and lysosomal protease expression, and accumulation of LC3B-II and p62. TH treatment restored the level of lysosomal proteins and resolved the accumulation of LC3B-II and p62. Impaired mitochondrial biogenesis was also restored by TH. The simultaneous restoration of autophagy and mitochondrial biogenesis by TH increased ß-oxidation of fatty acids. Additionally, the elevated oxidative stress and inflammasome activation in NASH liver were also decreased by TH. Conclusions: In a mouse model of NASH, TH restored autophagy and mitochondrial biogenesis to increase ß-oxidation of fatty acids and to reduce lipotoxicity, oxidative stress, hepatic inflammation, and fibrosis. Activating thyroid hormone receptor in the liver may represent an effective strategy for NASH treatment.


Drinking Water , Non-alcoholic Fatty Liver Disease , Animals , Disease Models, Animal , Drinking Water/metabolism , Fatty Acids/metabolism , Fibrosis , Humans , Inflammation/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Thyroid Hormones/metabolism , Triglycerides/metabolism
...